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 Abstract: Background: Pneumonia is one of the leading causes of death and disability due to 
respiratory infections. The key to successful treatment of pneumonia is in its early diagnosis 
and correct classification. PneumoniaNet is a unique deep-learning model based on CNN for 
identifying pneumonia on chest X-rays.  

Objective: A deep learning model that combines convolutional, pooling, and fully connected 
layers is presented in this study.  

Methods: In order to learn how to identify cases of pneumonia and healthy controls on chest 
X-ray pictures, PneumoniaNet was trained on a large labeled library of such images. A robust 
data augmentation technique was adopted to enhance the model generalization and training set 
diversity. Standard measures like as accuracy, precision, recall, and F1-score were applied to 
PneumoniaNet's performance evaluation.  

Results: The suggested model performed effectively in detecting pneumonia cases with an ac-
curacy of 93.88%. 

Conclusion: The model was evaluated against the current state-of-art methods and showed that 
PneumoniaNet outperformed the other models. 
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1. INTRODUCTION 

Pneumonia is a leading cause of death and disability, es-
pecially in young children and the elderly [1]. Pneumonia is 
an airway infection that can affect anybody, but it is espe-
cially dangerous for those with compromised immune sys-
tems. Pneumonia can be caused by a wide variety of micro-
organisms such as bacteria, viruses, and fungi, with Strepto-
coccus pneumonia being the most common bacterial cause 
and RSV being the most common viral cause. For effective 
treatment and to avoid consequences like respiratory failure 
and sepsis, prompt and correct diagnosis of pneumonia is 
essential. X-rays (CXRs) are routinely employed in the diag-
nosis and severity evaluation of pneumonia because they can 
show telltale infiltrates consolidations in the lung parenchy-
ma [2, 3]. CXR picture interpretation is complex since it 
necessitates a high level of knowledge, is subject to human 
error, and varies from interpreter to interpreter [3]. In addi-
tion, radiology departments around the world have been 
stressed by the increased demand for CXR interpretation 
because of the ongoing COVID-19 epidemic, underscoring 
the importance of having access to automated, reliable, and 
efficient methods to aid in clinical decision-making. Medical  
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image analysis, such as the detection and categorization of 
various disorders in radiographic pictures, has benefited 
greatly from the application of deep learning, particularly 
CNN [4]. CNNs are the most famous and well-researched 
neural networks used for localization, detection, classifica-
tion and segmentation of medical images. The ability of 
CNN to automatically learn from spatial features makes it 
suitable for such purposes. It has been shown in multiple 
studies that using a convolutional neural network (CNN) to 
detect pneumonia in CXR pictures can increase diagnosis 
accuracy while decreasing the burden on radiologists. 
CheXNet, a 121-layer DenseNet architecture, was created by 
[5] to detect pneumonia and other thoracic disorders from 
CXR images at a level of performance comparable to that of 
a radiologist. Researchers in [6] used a trained CNN model 
to distinguish between bacterial and viral pneumonia in pe-
diatric CXR pictures, demonstrating that their algorithm was 
more accurate at making this distinction than human radiolo-
gy specialists. Recent advancements in deep learning tech-
niques and applications have further established the effec-
tiveness of CNNs in detecting pneumonia and differentiating 
it from other lung diseases, such as COVID-19. Using a deep 
learning model trained on X-ray images, [7] proposes an 
automated technique for detecting COVID-19 patients, with 
a sensitivity of 98.08% and a specificity of 96.24%. Highly 



2    Recent Advances in Computer Science and Communications, XXXX, Vol. XX, No. XX Srivastava et al. 

sensitive and specific detection of COVID-19 instances was 
achieved using [8]. COVID-Net, a custom deep convolution-
al neural network trained on CXR images. This study further 
highlights the potential of CNNs in diagnosing pneumonia 
and related lung disorders by automatically detecting 
COVID-19 cases from X-ray pictures using transfer learning 
with CNNs [9].  

PneumoniaNet is a unique Convolutional Neural Net-
work (CNN) model proposed in this study for identifying 
pneumonia on CXR pictures. Chest X-ray images from pa-
tients with bacterial pneumonia, patients with viral pneumo-
nia, and healthy controls were used to train the model. To 
broaden the training set and enhance the model's generalisa-
tion capabilities, a powerful data augmentation technique 
was put into place. To prove its improved performance in 
both detection and categorization tasks, we compared Pneu-
moniaNet to existing state-of-the-art approaches. We evalu-
ated its performance using common metrics such as accura-
cy, precision, recall, and F1-score. PneumoniaNet seeks to 
improve upon the shortcomings of standard diagnostic meth-
ods by providing a faster, more precise, and more trustwor-
thy method of identifying and classifying pneumonia in CXR 
pictures. The model's capacity to generalize across a wide 
range of CXR pictures is improved by using a CNN architec-
ture, and the data augmentation technique boosts feature 
extraction. Our findings add to the expanding literature on 
deep learning-based diagnostic tools. They may have a major 
influence on pneumonia management by allowing for the 
quick, accurate, and automated examination of chest X-ray 
images. The paper's most significant findings are: 

• A powerful CNN model named PneumoniaNet was 
introduced in the study for identifying pneumonia 
in chest X-rays. This work addresses a critical issue 
in global health and helps close a gap in the present 
research environment. 

• A powerful data augmentation approach was used 
in the study's training phase. This method boosted 
the model's ability to generalize to new situations, 
which is especially important for medical imaging 
tasks with small training datasets.  

• The research compared PneumoniaNet to other 
state-of-the-art models, including CheXNet, 
DenseNet, InceptionNet, ResNet, VGGNet, and 
COVID-Net, across a number of criteria. It showed 
that PneumoniaNet is superior to these models on 
every metric compared to them. 

The rest of the paper is organized as follows: Section 2 
gives an insight into recent literature. The detailed method-
ology and the layer-wise description of a convolutional neu-
ral network are reported in section 3. In Section 4, we show 
how the suggested model performed in comparison to the 
state-of-the-art approaches used in the evaluation. The over-
all conclusion of the suggested technique and directions for 
further work are presented in section 5. 

2. LITERATURE REVIEW 

Significant progress was made in 2015 using the same 
dataset we are using here for CNN-based Pneumonia Detec-
tion. With the recent advancements in deep learning models 

and the subsequent availability of enormous datasets, algo-
rithms have been able to complete a variety of medical imag-
ing tasks, including skin cancer classification, hemorrhage 
identification, arrhythmia detection, and diabetic retinopathy 
detection. The use of chest X-rays in automated medical di-
agnosis has recently gained attention. There has been a rise 
in the application of these techniques to diagnose pulmonary 
nodules and classify cases of tuberculosis of the lungs. Re-
searchers analyzed the Open AI dataset to see how different 
convolutional models handled various irregularities. They 
discovered that a universal deep convolutional network de-
sign did not fare well in all cases. The classification accuracy 
of ensemble models was significantly higher than that of 
single models, and the deep learning methodology finally 
outperformed rule-based alternatives. 

Attention Modules are a part of [10], making the system 
more focused. Each attention module's feedforward and 
feedback attention processes are merged into a single feed-
forward process in the bottom-up, top-down feed-forward 
architecture. The authors used a deep neural network (DNN) 
and an attention mechanism to identify pneumonia from a 
chest X-ray (Table 1) [11-20]. The proposed network gener-
ates attention-aware features by combining a DNN architec-
ture with channel and spatial attention modules [21]. The 
authors analyzed Chest X-ray images with a CNN trained 
with machine learning and deep learning frameworks to de-
tect signs of lung disease (pneumonia) [22]. Presented 
ChestX-ray6, a low-throughput convolutional neural network 
(CNN) for automatic lung opacity, pleural effusion, and 
pleural pneumonia detection from digital chest X-ray pic-
tures. There are a total of 9,514 images, including both 
healthy and diseased chest X-rays, in the two databases. To 
better identify the various lung disorders [23], sorts the chest 
X-ray image collection into COVID-19, pneumonia, pneu-
mothorax, tuberculosis, and normal categories using eight 
pre-trained deep learning models based on CNN. There are 
two steps in the classification process. The Adam optimizer 
is used to train the CNNs, with a mini-batch size of 32 and a 
maximum of 30 epochs. The authors applied this trained 
network to the problem of disease categorization [24]. To 
better detect pneumothorax in CXR images, the Attention-
Based Lightweight Convolutional Neural Network 
(ALCNN) has been explored. This network is both parame-
ter-efficient and memory-efficient. It makes use of layered 
convolutional layers and an attention-based approach to fine-
tune feature maps for each channel. The authors also looked 
at the results from three other transfer learning methods and 
compared them to ALCNN. 

A study of the statistical relationship between labels im-
proved prediction accuracy, which in turn improved the per-
formance of a dataset consisting of thirteen photos from a 
total of fourteen categories. While algorithms have been 
studied for mining and predicting labels from radiological 
pictures and reports, the labels applied to those images have 
traditionally been restricted to illness tags alone [25]. Views 
from chest X-rays were categorized, and CT and X-ray im-
ages were used to segment bodily parts, and research was 
done on the detection of disease in X-ray images [26]. How-
ever, it is conceivable to gain from learning visual qualities 
from text and developing image descriptions that are on par 
with how a human would describe them. 
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Some of the most relevant papers have been summarized 
below in Table 1. 

3. METHODOLOGY 

3.1. Dataset  

The dataset is divided into three parts (train, test, valida-
tion), which are divided into two further sub-categories for 
each type of image, i.e., Pneumonia and Normal. There are a 
total of 5,864 X-ray images in jpeg format. 

All chest X-ray images were first screened by filtering 
out all low-quality or unreadable scans before their analysis. 
Two experts evaluated the diagnoses for the images from the 
dataset before allowing the images to be used for training the 
model. Fig. (1) describes the sample dataset images of chest 

X-rays. Another expert also checked the evaluation set for 
any errors. 

The data division is responsible for ensuring that the 
model is built, fine-tuned, and evaluated in a controlled 
manner to mitigate the issue of overfitting. Overfitting refers 
to a situation where a model exhibits high performance on 
the training data but fails to generalize well to new, unseen 
data. The inclusion of a validation set serves to mitigate the 
risk of "data leakage" during the model's creation phase, as it 
provides an unbiased assessment. Conversely, the test set 
serves as the definitive gauge of the model's genuine ability 
to generalize. The data division plays a crucial role, and 
therefore, in this research work, the data has been divided 
into 80% for training, 15% for testing and 5 % for validation 
(Fig. 2). 

Table 1. Summary of Research papers with results. 

References Model Dataset Results 

Singh et al. (2023)[10] 
Attention-aware CNN architecture, 

attention modules, deep neural network 
(DNN) with attention mechanism 

Kaggle chest X-ray dataset 
Accuracy: 95.47%, F-score: 

0.92 

Bhandari et al. (2022) [11] 
Grad-CAM, LIME, SHAP, 10-fold 

cross-validation 
7132 chest X-ray (CXR) images 

Test accuracy: 94.31 ± 1.01%, 
Validation accuracy: 94.54 ± 

1.33% 

Hajjej et al. (2022) [12] 
Machine learning, deep learning tech-

niques, automated diagnostics 
Not specified Accuracy: nearly 96% 

Ortiz-Toro et al. (2022) [13] 
Textural image characterization meth-
ods, fractal dimension, radiomics, su-

perpixel-based histon 
Not specified Not explicitly reported 

Aktas et al. [14] Deep CNNs 
103,468 images with 5 classes (COPD 

signs, COVID, normal, others, and pneu-
monia) 

COVID accuracy: 97%, Overall 
accuracy: 81%, Normal: 78%, 

Abnormal: 88% 

Saxena et al. [15] Multiclass deep learning models + XAI 

Medical images from IEEE [17] and Kaggle 
[18] depict people with COVID-19, people 
with viral pneumonia, and healthy people 

who have had chest X-rays taken. 

Not specified explicitly in the 
abstract. 

Lv et al. [16] 
Cascade-SEME framework + Regional 

Learning 

Images of chest X-rays for differentiating 
causes of pneumonia (bacterial, viral, and 

normal) X-ray data set from the chest 
(COVID-19) dataset for lung segmentation 

(1,000 masked chest X-rays) 

Improved sensitivity, specificity, 
accuracy, and F1 scores with 
SEME structure and regional 

learning 

Hussein, H.I., et al. (2023) 
[17] 

Lightweight deep CNN-based models A large dataset of chest X-ray images 
2-class accuracy: 98.55%, 3-

class accuracy: 96.83% 

Iqbal, A., et al. (2023) [18] 
TB-UNet - segmentation,  

TB-DenseNet - classification 
3 chest X-ray (CXR) datasets 

Segmentation: Precision: 
95.74%, Recall: 95.12%, 

F1score: 89.88% 

Kusakunniran, W., et al. 
(2023) [19] 

Modified InceptionV3 with self-
attention layers 

Not specified 
Sensitivity: 93%, Specificity: 

96%, Accuracy: 96% 

Cahyani, D.E., et al. (2023) 
[20] 

CNN-BiLSTM combination models Not specified 
Resnet50-BiLSTM: Accuracy: 

98.48% 
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Fig. (1). Normal Images. 

	
  

Fig. (2). Pneumonia Images. 

Table 2. Details of Dataset. 

Dataset Details 

Train Test Validation 

Normal  Pneumonia Normal  Pneumonia Normal  Pneumonia 

1241 3775 234 390 112 112 

 
3.2. Methodology 

3.2.1. Importing the Dataset 

The dataset can be downloaded from Kaggle easily. Its 
size is 3.9 GBs. We then need to check for the three directo-
ries to see if they have been downloaded successfully, and 
then respective directory names need to be set up for further 
use (Table 2). The data division is responsible for ensuring 
that the model is built, fine-tuned, and evaluated in a con-
trolled manner to mitigate the issue of overfitting. Overfit-
ting refers to a situation where a model exhibits high perfor-
mance on the training data but fails to generalize well to 
new, unseen data. The inclusion of a validation set serves to 
mitigate the risk of "data leakage" during the model's crea-
tion phase, as it provides an unbiased assessment. Converse-
ly, the test set serves as the definitive gauge of the model's 
genuine ability to generalize. 

The data division plays a crucial role in research by en-
suring the integrity and dependability of machine learning 
models. It allows researchers to draw educated conclusions 
about the performance and capabilities of their models. 
3.2.2. Preprocessing and Augmentation 

Data augmentation techniques are employed to enlarge 
and enhance a dataset artificially. Overfitting problems can 
be fixed, and the model's generalization ability can be im-
proved with this technique. First, to ensure that differences 
in image size would not influence the performance of the 
model, every image was resized to have a constant dimen-
sion of 224×224 pixels. Regardless of the image's actual 
size, this homogeneity enables the model to concentrate on 
its distinctive qualities. An image's pixel values are normal-
ized using the rescale setting of 1/255. An image's original 
pixel values can be between 0 and 255. The pixel values 
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were converted to a scale from 0 to 1 by rescaling by a factor 
of 1/255. This phase ensures faster convergence during mod-
el training. Data augmentation techniques were employed to 
expand the dataset and improve model robustness artificially. 
The images are subjected to random shear transformations 
with a shear range of 0.2 and random zooming with a zoom 
range of 0.2. By using these techniques, the photos can be 
altered, broadening the training set's diversity. The default 
for the horizontal flip is 'True', which means that images are 
randomly flipped along their horizontal axis. The model may 
be trained to recognize pneumonia signs using this method, 
regardless of how they are oriented in the image. As part of 
the augmentation process, the resize procedure is used to 
either shrink or enlarge the image. Clipping the image angles 
anticlockwise by 0.2% shear range. The X-rays were ran-
domly zoomed to a magnification ratio of 0.2 percent, and 
then they were flipped horizontally. 
3.2.3. Model 

Feature extractors and the classifier form the backbone of 
the model. In a feature extraction stack, the output of one 
layer feeds into the input of the next layer. In this, the au-
thors suggest a three-layer architecture with convolution, 

max-pooling, and classification layers. The various levels are 
as follows: Figs. (3 and 4) represents the details of the model 
design flowchart and CNN model, which is used for feature 
extraction (Tables 3 and 4). The base layer requires 224x224 
pixel images with 3 colour channels. In order to capture 
complex patterns, the successive layers perform a sequence 
of convolutional procedures followed by max-pooling, 
thereby progressively decreasing the spatial dimensions 
while increasing the number of channels. The model makes 
use of independent convolutions to facilitate rapid feature 
acquisition. To maintain consistency throughout training, 
batch normalization is applied after specific convolutions. 
The architecture is made up of many convolutional blocks of 
progressively greater depth piled on top of one another, with 
the reduction of spatial dimensions being completed by max-
pooling layers. Next, the input is transformed into a vector 
by a flattening layer, and then dense (completely connected) 
layers are added. Overfitting can be reduced with the use of 
dropout layers. Since the final dense layer produces only two 
classes, it's best used for simple classification problems. In 
order to learn complicated visual data and produce precise 
predictions, this CNN model employs a hierarchical pattern 
extraction. 

 
Fig. (3). Model Design flowchart. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
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Fig. (4). CNN model architecture. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 

Table 3. The CNN Model. 

Layer Number Shape 

Input Layer  - 224×224, 3  

Convolution  2 (224×224×64) 

Max Pool 1 (112×112×64) 

Separable Convolution  2 (112×112×128) 

Max Pool 1 (56×56×128) 

Separable Convolution  1 (56×56×256) 

Batch Normalization  1 (56×56×256) 

Separable Convolution  1 (56×56×256) 

Batch Normalization 1 (56×56×256) 

Separable Convolution  1 (56×56×256) 

Max Pool 1 (28×28×256) 

Separable Convolution 	
   1	
   (28×28×512)	
  

(Table 1) contd…. 

224x224,3 
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Layer Number Shape 

Batch Normalization  1 (28×28×512) 

Separable Convolution  1 (28×28×512) 

Batch Normalization 1 (28×28×512) 

Separable Convolution  1 (28×28×512) 

Max Pool 1 (14×14×512) 

Flatten Layer 1 (100352) 

Dense Layer 1 (1024) 

Dropout (0.5) 1 (1024) 

Dense  1 (512) 

Dropout (0.7) 1 (512) 

Dense  1 (2) 

 
Table 4. Parameters of the Model. 

Parameter Type Number 

Non-trainable Parameters 3,072 

Trainable Parameters 104,194,434 

Total Parameters 104,197,506 

3.2.4. Training 

The model was trained on Google Colab with Nvidia 
Tesla K80. Each iteration took approximately 550s. To strike 
a good balance between training time, convergence, and 
model performance, 100 epochs were run. Multiple factors, 
including convergence, reducing overfitting and underfitting, 
computational resources, and validation results, informed the 
decision to employ 100 epochs. The model can undergo 
enough training iterations to capture important characteris-
tics in the data while minimizing overfitting when 100 
epochs are used in the training process. The parameters used 
for training are tabulated in Table 5. 

Table 5. Parameters of training. 

Parameter Value 

Batch Size 14 

Epochs 50 

Early Stopping NA 

Learning Rate Reduction 0.8 after 5 epochs 

Loss Binary Cross Entropy 

Metrics Accuracy 

Learning Rate 0.0001 

Optimizer Adam 

Steps Per Epoch 500 

Validation Steps Per Epoch 10 

4. EXPERIMENT AND RESULT ANALYSIS 

To train the PneumoniaNet model, a number of epochs 
were executed to fine-tune the network's parameters itera-
tively. The training set is analyzed in a single epoch, and 
then the model is put to the test on the validation set. In this 
experiment, 100 epochs were used, and after each epoch, the 
model's accuracy and loss values were recorded for both the 
training and validation sets. A validation set was utilized to 
ensure the model was robust in the face of new data and to 
prevent overfitting. The model's ability to generalize to new 
data is tested using the validation set, a subset of the training 
data that is not used for training. True outcomes (both posi-
tive and negative) as a percentage of the total population is 
what we call accuracy. It's a metric for assessing the preci-
sion with which the instances are sorted. The loss value, on 
the other hand, quantifies the extent to which the model 
over- or under-predicted. A lower loss value indicates a bet-
ter model fit. Figs. (5 and 6) show the accuracy and loss, 
respectively. 

	
  

Fig. (5). Accuracy. (A higher resolution/colour version of this fig-
ure is available in the electronic copy of the article). 
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Fig. (6). Loss. (A higher resolution/colour version of this figure is 
available in the electronic copy of the article). 

Over the training epochs, the model's accuracy in correct-
ly classifying images improved, as measured by the training 
accuracy measure. As the model learned and then consoli-
dated its knowledge, its accuracy gradually improved until 
leveling out. Similar to the training accuracy, the validation 
accuracy rose steadily over time. It appeared that the model 
was not overfitting and generalized well to new data because 
the validation accuracy was so close to the training accuracy. 
Maximum training accuracy was 93.47%, with maximum 
validation accuracy of 90.45%. As the model gets better, it 
should be no surprise that both the training loss and the vali-
dation loss decreased over time. As with precision, the rate at 
which loss decreased was steepest in the early epochs before 
leveling out. This indicated that the model was improving its 
fit to the data as the prediction error decreased. Pneumoni-
aNet showed promising performance in appropriately classi-
fying the chest X-ray images while avoiding overfitting. The 
positive trends in accuracy and loss values over epochs sug-
gest that the model is learning and generalizing competently. 

PneumoniaNet was evaluated using four criteria (Accu-
racy, Precision, Recall, and F1-Score) and compared to six 
other state-of-the-art models. CheXNet, DenseNet, Incep-
tionNet, ResNet, VGGNet, and COVID-Net were some of 
the models used. The models were evaluated to see how well 
they perform for detecting and classifying pneumonia, given 
each has been utilized in medical imaging for a variety of 
illness detection tasks, including PneumoniaNet. Table 6 
presents a comparative performance of all the seven models: 

When compared to the other models, PneumoniaNet had 
the best results across all metrics tested. This finding con-
firms that the PneumoniaNet model is a reliable and useful 
tool for identifying pneumonia in chest X-ray images. 

For each of these models, the confusion matrix was also 
computed. It's a four-cell table that reports the number of FP 
(False Positives), FN (False Negatives), TP (True Positives), 
and TN (True Negatives). This opens the door to in-depth 
research beyond the simple measurement of accuracy in 
classification. Since accuracy might be deceptive when the 
data set is uneven (i.e., when the number of observations in 
each class varies substantially), it is not a good indicator of a 
classifier's true performance. PneumoniaNet's improved per-
formance was further validated by an evaluation utilizing 
confusion matrices. 

PneumoniaNet outperforms other state-of-the-art models 
in the identification and classification of pneumonia from 
chest X-ray images due to its sophisticated convolutional 
neural network architecture and training technique. Pneu-
moniaNet can be further refined and validated with addition-
al illness types and data sets in the future. Here's a detailed 
explanation of the confusion matrix values for each model: 

5. DISCUSSION 

PneumoniaNet achieved a high number of True Positives, 
correctly identifying 223 cases of pneumonia. However, it 
had a relatively low count of False Positives (11), indicating 
a good ability to avoid misclassifying healthy cases as 
pneumonia. It did, however, miss out on identifying 30 cases 
of pneumonia (False Negatives). On the positive side, it 
accurately classified 360 healthy cases as healthy (True 
Negatives). This model's high Precision (97.03%) suggests it 
is effective at avoiding false positives, and its high Recall 
(92.30%) indicates its ability to capture a significant portion 
of actual pneumonia cases, as shown in Fig. (7). 

CheXNet demonstrated 200 True Positives, which means 
it correctly identified pneumonia in these cases. However, it 
had a higher count of False Positives (34), indicating a 
tendency to sometimes classify healthy cases as pneumonia. 
It missed 50 instances of pneumonia (False Negatives). The 
model did accurately classify 340 healthy cases as healthy 
(True Negatives). CheXNet's Precision (90.90%) indicates a 
relatively lower ability to avoid false positives, and its Recall 
(87.20%) suggests that it captured a lower proportion of 
actual pneumonia cases compared to PneumoniaNet, as 
shown in Fig. (8). 

Table 6. Comparative Performance of the model. 

Model Accuracy Precision Recall F1-Score Sensitivity Specificity 

PneumoniaNet 93.88% 97.03% 92.30% 0.94 88.14% 97.04% 

CheXNet 86.60% 90.90% 87.20% 0.89 80.00% 90.91% 

DenseNet 88.20% 92.20% 88.50% 0.90 82.00% 92.25% 

InceptionNet 91.30% 94.90% 91.00% 0.92 86.00% 94.92% 

ResNet 89.70% 93.60% 89.70% 0.91 84.00% 93.58% 

VGGNet 86.60% 90.90% 87.20% 0.89 80.00% 90.91% 

COVID-Net 89.70% 93.60% 89.70% 0.91 84.00% 93.58% 



Pneumonia Detection and Categorization in Chest X-ray Recent Advances in Computer Science and Communications, XXXX, Vol. XX, No. XX    9 

	
  
Fig. (7). CM for PneumoniaNet. (A higher resolution/colour ver-
sion of this figure is available in the electronic copy of the article). 

	
  
Fig. (8). CM for CheXNet. (A higher resolution/colour version of 
this figure is available in the electronic copy of the article). 

DenseNet achieved 205 True Positives, indicating 
accurate identification of pneumonia cases. It had 29 False 
Positives, suggesting some misclassification of healthy cases 
as pneumonia. The model missed 45 cases of pneumonia 
(False Negatives) and correctly classified 345 healthy cases 
(True Negatives). The Precision (92.20%) and Recall 
(88.50%) values indicate a good balance between avoiding 
false positives and capturing true positives, as shown in Fig. 
(9). 

InceptionNet's True Positives numbered 215, showing 
effective pneumonia identification. It had 19 False Positives, 
indicating a relatively lower rate of misclassifying healthy 
cases. The model missed 35 instances of pneumonia (False 
Negatives) and accurately classified 355 healthy cases (True 
Negatives). InceptionNet's high Precision (94.90%) and 
Recall (91.00%) values suggest a strong balance between 
avoiding false positives and capturing true positives, as 
shown in Fig. (10). 

ResNet correctly identified 210 pneumonia cases (True 
Positives) while having 24 False Positives, indicating a 
moderate rate of misclassifying healthy cases. It missed 40 
instances of pneumonia (False Negatives) and accurately 
classified 350 healthy cases (True Negatives). ResNet's 
Precision (93.60%) and Recall (89.70%) values suggest a 
trade-off between avoiding false positives and capturing true 
positives, as shown in Fig. (11). 

VGGNet achieved 200 True Positives, indicating accurate 
pneumonia identification. It had 34 False Positives, suggesting 

misclassification of some healthy cases. The model missed 50 
instances of pneumonia (False Negatives) and accurately 
classified 340 healthy cases (True Negatives). VGGNet's 
Precision (90.90%) and Recall (87.20%) values indicate 
performance similar to CheXNet, as shown in Fig. (12). 

COVID-Net correctly identified 210 pneumonia cases 
(True Positives) while having 24 False Positives, indicating a 
moderate rate of misclassification of healthy cases. It missed 
40 instances of pneumonia (False Negatives) and accurately 
classified 350 healthy cases (True Negatives). COVID-Net's 
Precision (93.60%) and Recall (89.70%) values are similar to 
ResNet's performance as shown in Fig. (13). 

	
  
Fig. (9). CM for DenseNet. (A higher resolution/colour version of 
this figure is available in the electronic copy of the article). 

	
  
Fig. (10). CM for InceptionNet. (A higher resolution/colour version 
of this figure is available in the electronic copy of the article). 

	
  
Fig. (11). CM for ResNet. (A higher resolution/colour version of 
this figure is available in the electronic copy of the article). 
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Fig. (12). CM for VGGNet. (A higher resolution/colour version of 
this figure is available in the electronic copy of the article). 

	
  
Fig. (13). CM for COVID-Net. (A higher resolution/colour version 
of this figure is available in the electronic copy of the article). 

CONCLUSION  

In this research, we introduced PneumoniaNet, a novel 
Convolutional Neural Network (CNN) model trained on 
chest X-ray images to detect and categorize pneumonia. 
Several state-of-the-art models were used to assess Pneu-
moniaNet's efficacy; these were CheXNet, DenseNet, Incep-
tionNet, ResNet, VGGNet, and COVID-Net. Accuracy, pre-
cision, recall, and F1-score were the metrics where Pneu-
moniaNet excelled in comparison to other models. CheXNet, 
DenseNet, InceptionNet, ResNet, VGGNet, and COVID-Net 
were among the models compared to the suggested tech-
nique. Accuracy, precision, recall, F1-score, sensitivity, and 
specificity are some of the measures used. When compared 
to other models, PneumoniaNet has the highest accuracy at 
93.88%.With a precision of 97.03%, PneumoniaNet also 
shows that it can make the fewest erroneous predictions. 
PneumoniaNet's recall (sensitivity) of 92.30% demonstrates 
its efficacy in spotting a sizable fraction of genuine positives. 

PneumoniaNet's F1-score of 94.61% exemplifies a fair 
compromise between accuracy and recall. PneumoniaNet has 
a sensitivity of 88.14 percent, which means it can reliably 
identify positive cases.PneumoniaNet has a high level of 
accuracy in identifying false negatives, with a specificity of 
97.04%. When compared to these criteria, other models do 
poorly. The accuracy, precision, recall, F1-score, sensitivity, 
and specificity of various networks, such as CheXNet,  
 

DenseNet, InceptionNet, ResNet, VGGNet, and COVID-
Net, are all different. When taken as a whole, these indica-
tors prove that PneumoniaNet is the best system available for 
identifying and classifying pneumonia patients. This result 
demonstrates that PneumoniaNet was successfully trained to 
recognize and accurately classify chest X-ray pictures for 
evidence of pneumonia.  

Moving forward, several key areas of future work can 
enhance the impact of PneumoniaNet. Expanding the da-
taset's size and diversity, exploring transfer learning for 
quicker convergence, integrating multi-modal data, and en-
hancing model explainability are essential steps. Further ef-
forts to improve the model's robustness, address bias con-
cerns, and collaborate with medical experts will ensure its 
clinical relevance. Real-time deployment optimization, sub-
type differentiation, and extension to other thoracic diseases 
offer exciting possibilities, promising a comprehensive AI 
solution that significantly advances early diagnosis and pa-
tient care in radiology. 

While the study's findings are encouraging, it's important 
to note a few caveats. First, PneumoniaNet was mostly tested 
on one dataset, therefore, its results may not apply to other 
types of patients or imaging modalities. Second, it's possible 
that critical information is being left out if only chest X-rays 
are used. Lacking a way to convey its predictions to doctors, 
the model's interpretability also remains a barrier. Potential 
data biases were not thoroughly investigated, which limits 
the study's relevance to the real world. Finally, while Pneu-
moniaNet's accuracy is impressive, it is still possible for 
false positives and negatives to occur; care should be taken, 
and more validation should be conducted before clinical in-
tegration. 

Given the larger context of pneumonia infections, it is 
important to recognize that our current research focuses on 
classifications, which limits its scope. Pneumonia has many 
types, each with its own symptoms and diagnostic 
challenges. We categorize pneumonia using the two 
classifications in our study. We acknowledge the presence of 
different pneumonia types that warrant further study. Viral, 
aspiration, and atypical pneumonia, among others, present 
different diagnostic and classification issues. Our study 
provides a foundation for classifying different pneumonias 
using similar methods. Our study may help future 
researchers develop pneumonia disease-specific models and 
diagnostic approaches. Deep learning, convolutional neural 
networks, and robust evaluation criteria can improve 
pneumonia diagnosis across more types. Future studies 
should broaden these approaches to include more categories 
to create a comprehensive and effective diagnostic 
framework for pneumonia infections from multiple sources. 
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